Realizing *p***-type NbCoSn** half-Heusler compounds with enhanced thermoelectric performance via Sc substitution

Ruijuan Yan¹, Wenjie Xie¹, Benjamin Balke², Guoxing Chen¹, Anke Weidenkaff^{1,2}

¹ Department of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany

² Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS, Alzenau, Germany

Abstract

N-type half-Heusler NbCoSn is a promising thermoelectric material due to favourable electronic properties. It has attracted much attention for thermoelectric applications while the desired NbCoSn counterpart shows poor thermoelectric *p*-type performance. In this work, *p*-type NbCoSn has been obtained using Sc substitution at the Nb site, and their thermoelectric properties were investigated. Of all samples, Nb_{0.95}Sc_{0.05}CoSn compound shows a maximum power factor of 0.54 mW/mK² which is the highest among the previously reported values of *p*-

Electrical properties

type NbCoSn. With the suppression of thermal conductivity, ptype $Nb_{0.95}Sc_{0.05}CoSn$ compound shows the highest measured figure of merit ZT = 0.13 at 879 K.

Figure 1 Crystal structure of NbCoSn and schematic illustration of Sc substitution

Phase characterization

> All samples show the cubic MgAgAs crystal structure with some minor Nb₃Sn impurities.

> The cell parameter increases with Sc concentration because of the ionic radius difference between Sc^{3+} (0.87 Å) and Nb^{5+} (0.74 Å).

Figure 4 Temperature dependence of the electrical transport properties of Nb_{1-z}Sc_zCoSn (a) electrical conductivity (b) $\ln \sigma vs$. 1000/T plot.

(b) of Nb_{1-z}Sc_zCoSn samples and the power factor of Nb_{0.8}Zr_{0.2}CoSn as comparison [2].

 $Nb^{5+}=Sc^{3+}+2h^{+}$

≻The carrier concentration trend matches with the σ variation. \sim The electrons are dominant (Sc < 0.05) and with increasing Sc content, n decreases. \blacktriangleright When Sc \geq 0.05, the dominant carriers are holes and the cont-

Figure 2 (a) PXRD patterns and (b) cell parameters of Nb₁₋₇Sc₇CoSn samples.

There is no obvious phase segregation and the elements almost distribute uniformly in $Nb_{0.95}Sc_{0.05}CoSn$ sample.

Figure 6 The carrier concentration and carrier mobility of Nb₁₋₇Sc₇CoSn samples at room temperature (a) *n*-type, (b) *p*-type.

Thermal properties

 \triangleright After substituting Sc, the κ decreases dramatically from 11.14 W/ mK to 4.25 W/mK at room temperature due to the reduction of $\kappa_{\rm L}$, which originates from the intensive point defect scattering (mass fluctuation and strain field fluctuation).

Figure 7 The temperature dependence of total thermal conductivity κ (a) and lattice thermal conductivity $\kappa_{\rm L}$ (b).

ZT

Figure 3 The secondary electron image and the elemental distribution mappings of Nb_{0.95}Sc_{0.05}CoSn.

The value of ZT improved to 0.13 at 879K in *p*-type $Nb_{0.95}Sc_{0.05}CoSn$ sample, which is much higher than that of $Nb_{0.8}Zr_{0.2}CoSn$.

Figure 8 The figure of merit ZT for p-type NbCoSn and Nb_{0.8}Zr_{0.2}CoSn and Nb_{0.8}Zr_{0.2}CoSn as comparison [2].

Conclusions

- \succ Sc is substituted at Nb site successfully and changes the original *n*-type NbCoSn to *p*-type semiconductor, indicating Sc is an efficient *p*-type dopant.
- > Substituting Sc generates point defects and reduces lattice thermal conductivity.
- \succ The highest ZT value of 0.13 is achieved in p-type Nb_{0.95}Sc_{0.05}CoSn.

References

- [1] He R, Huang L, Wang Y, et al. Enhanced thermoelectric properties of *n*-type NbCoSn half-Heusler by improving phase purity. APL Mater. 2016;4:104804.
- [2] Ferluccio DA, Smith RI, Buckman J, et al. Impact of Nb vacancies and p-type doping of the NbCoSn-NbCoSb half-Heusler thermoelectrics. Phys Chem Chem Phys. 2018;20:3979–3987.

Acknowledgement

This work is supported by DFG project BA 4171/4-1. Besides, thanks for help from Dr. Wenjie Xie, Dr. Benjamin Balke and Dr. Guoxing Chen.

