Dual Functional Self-

Regenerative

TECHNISCHE UNIVERSITÄT DARMSTADT

Cr-substituted Ba, In, O₅

Marc Widenmeyer^{1*}, Songhak Yoon², Guoxing Chen¹, Anke Weidenkaff^{1,2*} ¹ Technische Universität Darmstadt, Materials and Resources, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany ² Fraunhofer Institute IWKS, Rodenbacher Chaussee 4, 63457 Hanau, Germany

* marc.widenmeyer@mr.tu-darmstadt.de; anke.weidenkaff@mr.tu-darmstadt.de

Brownmillerite-type Ba₂In₂O₅ is a high-temperature proton conductor with mixed ionic-electronic conductivity. It shows a yellow color^[1] and band gap of $E_G \approx 2.9 \text{ eV}^{[2]}$. These electronic and optical properties imply an application as oxygen transport membrane and photocatalyst for CO₂ reduction. Partial substitution of Cr³⁺ for In³⁺ allows a band gap reduction together with crystal structure changes crucial for the efficiency of the photocatalytic reaction^[3] and the oxygen permeation performance of the ceramic membrane^[4].

Oxygen Transport Membranes

The partial substitution of Cr³⁺ for In³⁺ causes O vacancy disorder^[3,4]

Rietveld refinements of synchrotron diffraction data of Ba2In2-xCrxO5: orthorhombic (Ibm2) Ba2In2O5 (left), tetragonal (I4cm) Ba₂In_{1.75}Cr_{0.25}O₅ (middle), and changing of full width at half maximum (FWHM) for 3 representative reflections (right) [4].

FWHM of reflections along the *c*-axis are a direct measure of O vacancy disorder.

Photocatalytic CO₂ Reduction

 $Ba_2In_{2-x}Cr_xO_5$ is able to convert CO_2 in presence of H_2 and UV/Vis.

Structural changes of Ba₂In_{2-x}Cr_xO₅ and their effect on oxygen permeation flux J(O₂): orthorhombic (*lbm*2) Ba₂In₂O₅ (left), tetragonal (I4cm) $Ba_2In_{1.75}Cr_{0.25}O_5$ (middle), and temperature and composition dependent oxygen permeation flux $J(O_2)$ together with photos of sintered membranes of $Ba_2In_2O_5$ (a), $Ba_2In_{1.8}Cr_{0.2}O_5$ (b), and $Ba_2In_{1.75}Cr_{0.25}O_5$ (c) (right) [4].

X	<i>P</i> (O ₂ ,1223 K)	E _A	D_0	
	mL·min ⁻¹ ·cm ⁻² ·mm	kJ∙mol⁻¹	cm ² ⋅s ⁻¹	
0.00	0.89	9.4	1.6	
0.10	1.40	8.1	2.2	
0.25	1.10	4.9	1.3	

 \rightarrow O vacancy disorder reduces E_{Δ} \rightarrow Unit cell volume controls D_0 \rightarrow x = 0.1 best compromise

> Concept of plasma-induced CO₂ conversion Thermogravimetic (TGA) analysis of Ba₂In₂₋ $_{x}Cr_{x}O_{5}$ in flowing CO₂ leading above $T \approx 1050$ K to a decomposition to the starting materials In_2O_3 , BaCO₃, and chromium oxide (a). This allows for a material reformation upon

Band gap of $Ba_2 In_{2-x} Cr_x O_5$: Optical absorbtion spectra of (1) $Ba_2 In_{1.96} Cr_{0.04} O_5$, (2) $Ba_2 In_{1.92} Cr_{0.08} O_5$, (3) $Ba_2 In_{1.88} Cr_{0.12} O_5$, (4) $Ba_2In_{1.84}Cr_{0.16}O_5$, (5) $Ba_2In_{1.60}Cr_{0.40}O_5$, (6) $Ba_2In_{1.40}Cr_{0.60}O_5$ (left), and calculated electronic band structure of $Ba_2In_2O_5$ and $Ba_2Cr_{1.75}Cr_{0.25}O_5$; green = Ba, pink = In, blue = Cr, red = O (right) [5]. XRD data of $Ba_2In_{1.40}Cr_{0.60}O_5$ showed the presence of small quantities of BaCrO₄.

Photocatalytic conversion of CO₂ in presence of H₂: Conversion upon Hg lamp irradiation ($\lambda \leq 578$ nm) increases due to an narrowing of the band gap by Cr substitution. BET active surface area of $Ba_2In_{2-x}Cr_xO_5$ is by a factor of about 250 smaller than for P-25 [5].

Using adjusted soft chemistry synthesis to enhance active surface area.

Soft Chemistry Synthesis Reaction Protocol

Precursors for Soft Chemistry: $Ba(NO_3)_2$, $In(NO_3)_3 \cdot y H_2O$, $Cr(NO_3)_2 \cdot 9 H_2O$

→ CA route: Only citric acid (CA) as chelating agent or PD route: Additionally, 2,6-Pyridinedicarboxylic acid (2,6-pydc),

2,6-diaminopyridine (2,6-pyda) and polyethylene glycol (PEG) for complexation process

→ Wet chemistry: (i) Mixing, (ii) polyesterification, (iii) subsequent calcination at different temperatures

DRS measurements of CA (left) & PD (middle) route samples calcined at 1173 K, 1273 K, 1373 K, and 1473 K, respectively [6]. Photocatalytic CO₂ conversion (right): CA shows higher activity then solid state samples (for short time); PD shows no activity [6].

- Surface composition & structure is crucial for photocatalysis
- → Surface reconstruction
- Reaction & deactivation mechanisms unknown
- Combined in operando XANES/DRIFTS/MS studies after EBS upgrade are required for an enhanced understanding of the fundamental reaction steps

References & Acknowledgements

[1] J. Goodenough *et al., Solid State Ionics* **1992**, 52, 105–109. [2] S. Yoon *et al., Solid State Sci.* **2017**, *73*, 1–6. [3] S. Yoon *et al., Solid State Sci.* **2018**, *78*, 22–29. [4] M. Widenmeyer *et al.*, **2019**, submitted. [5] M. Widenmeyer *et al.*, **2019**, submitted. [6] S. Yoon *et al.*, in preparation.

Federal Ministry of Education **KOPERNIKUS >>PROJEKTE** and Research Die Zukunft unserer Energie The funding of the Federal Ministry of Education and Research of Germany in the framework of the *Kopernikus Projects for the Energiewende* within the project *Plasma-induced CO*₂*-conversion* (project) number: 03SFK2S3B), the Vector Stiftung (2015-044), and ESRF, Grenoble, France within experiment CH-5342 is highly acknowledged. We are thankful to M.Sc. Katharina-Sophia Wiegers, Dr. Stefano Checchia, Dr. Mauro Coduri, and Prof. Dr. Marco Scavini for sample preparation and data collection.