

Up- and Down Conversion of Functional (M-A-Ch) Materials a strategy combining solid state synthesis of functional materials, resource efficiency and computational modeling

Materials Resource Management	Prof. Dr. Richard Weihrich Professor of Chemistry of Materials and Resources, Institute of Materials Resource Management (MRM), University of Augsburg richard.weihrich@mrm.uni-augsburg.de		Universität Augsburg University
Concept	Synthesis of Functional M-A-X-Materials	is of Materials by: Conversion Chemistry Functional M-A-X-Materials by conversion processes	Sustainability and Resource Efficiency
 From one-way- to multi-conversion reactions up-, down-, forth-conversion Sustainable chemical processes: Dissolution Control of product formation Sustainability and resource efficiency: Resource efficient processes Recovery/Substitution of critical elements Close reaction cycles Sol-Gel and Liquids reaction media: 	<complex-block></complex-block>	One way materials synthesis EOL: Waste Material	M ^R Resource efficient Materialials

- Metastable compounds
- Green IT:
 - DFT prediction on stability
 - Prediction of targets

M-A-X-Phase diagram: Materials and Conversions in Liquids and Melts

Goals

- Low temperature conversions
- Solved reaction mechanisms and paths
- > Conversion of SnX, $Bi_2X_{3,}$, InS to M_xAX_y compounds
- \blacktriangleright Dissolution of SnS and Bi_2S_3 :
- Muliple conversions, different paths
- Directed reactions and control of product formation
- Electronic design of materials properties
- Morphological templating
- > Formation of spintronic ($Co_3Sn_2S_2$), thermoelectric (Co_3InSnX_2 ,
 - Ir₂Sn₃X₃, Ni₃Sn₂S₂, PtSnX), superconducting (Ni₃Bi₂X₂) materials

Known and unknown compositons in the M-A-X-Phase diagram: investigationstep one (blue), step 2 (red) step 3 (yellow)

Ni

Co₂Sn₃Te₃; Ni_{0.33}Sn_{3.67}

Ni₃Sn₂S₂,

Ni₆SnS₂,

Ni₉SnS₂

Te₄,

Ni_{5.62}Se₂Sn

Ni_{2.86}SnTe₂

Nis 76SnTe2:

Rh

Rh₃Sn₂S₂

Rh₂Sn₃Te₃

| Ir

Ir₂Sn₃S₃

Ir₂Sn₃Se₃

Ir₂Sn₃Te₃

Pd

PdSnTe

Pd₅SnTe

Pd_{6+x}SnTe₂

Pt

Pd₇Se_{9.9}Sn₂ PtSnSe

PtSnS

PtSnTe

- \Rightarrow kinetic control of product formation
- \Rightarrow study of reaction mechanism
- \Rightarrow direction of reactions
- \Rightarrow Microwave assistance

- Novel Products and polymorphs
- Study of Reaction Paths
- Back and furth conversion
- DFT modeling Green IT
- Green Chemistry and reaction paths

Methods:

- Solid state synthesis
- In situ high- and low temperature and high pressure X-ray diffraction
- DFT modelling on various levels and codes CRYSTAL17, vasp, FPLO – energy diagrams, structure-property-relations, bond formation

References:

S. Rommel, R. Weihrich, Chem. Eur. J. 2015, 21, 9863. S. Rommel, F. Bachhuber, R. Weihrich, Chem. Eur. J. 2016, 22, 6333 W. Yan, F. Pielnhofer, A.S. Tragl, R. Weihrich, Z. Allg. Anorg. Chem. 2015,641, 543. R. Weihrich, W. Yan, J. Rothballer · Ph. Peter, S. M. Rommel, S. Haumann, F. Winter, Ch. Schwickert, R. Poettgen,, Dalton Trans., 2015, 44, 15855 .

| Fe

Fe₂SnS₄

l41/a

Co

Co₃Sn₂S₂

Co₂Sn₃Se₃

M = Mn

S

Se

Те

Mn₂SnS₄

Cmmm.

Mn₂SnSe₄

Mn₂SnTe₄

(Mn,Sn)Te

C2/m

Pnma

Pnma

F. Bachhuber, R. Weihrich, P. Schmidt et al. Angew. Chem. Int. Ed. 2014, 53, 11629 – 11633. F. Pielnhofer R. Weihrich, T. Nilges, P. Schmidt, Z. Anorg. Allg. Chem. 2015, 641, 1099-1105. F. Bachhuber, J. Rothballer, T. Soehnel, R. Weihrich, J. Chem. Phys., 139 (2013) 214701. F. Bachhuber, J. Rothballer, T. Soehnel, R. Weihrich, Comput. Mater. Sci (2014), 89, 114. F. Bachhuber, A. Krach, A. Furtner, T. Söhnel, J. Rothballer, R. Weihrich, J. Solid State Chem. 226, (**2015)** 29.

W. Schnelle, A. Leithe-Jasper, H. Rosner, F. M. Schappacher, R. Pöttgen, F. Pielnhofer, and R. Weihrich, Phys. Rev. B 2013, 88, 144404. O. Zech, A. Harrar, W. Kunz, Nonaqueous Microemulsions Containing Ionic Liquids – Properties and Applications, in: Ionic Liquids, Theory and Applications Werner Kunz, K. Häckl, Chem. Phys. Lett. 661(2016) 6-12.

Acknowledgment:

DFG for financial support