International Conference on **Resource Chemistry** March 08-09, 2021

ON THE DEVELOPMENT OF RECYCLING STRATEGIES FOR ALL-SOLID-STATE LITHIUM-ION **BATTERIES WITH OXIDE ELECTROLYTES**

Mohammad Ali Nowroozi^{1,*}, Wolfgang Ensinger¹ and Oliver Clemens²

¹Technische Universität Darmstadt, Institut für Materialwissenschat, Fachgebiet Materialanalytik, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany. ²Universität Stuttgart, Institut für Materialwissenschaft, Abteilung Chemische Materialsynthese, Heisenbergstr. 3, 70569 Stuttgart, Germany. * Corresponding author. e-mail: nowroozi@md.tu-Darmstadt.de

Introduction

Recycling of (all-solid-state) LIBs: Current state

Materials and Methods

- Less than 5% of the spent LIBs are recycled in the US and the EU [1]
- Current studies mainly concern about recycling of liquid-based electrolyte LIBs [2]
- Recycling of all-solid-state LIBs, which are expected to enter the battery market, is more challenging due to complexity of the systems
- Only some limited investigations have been performed on all-solid-state LIBs [3]
- Common recycling techniques for LIBs [4]: hydrometallurgical, mechanical and physical methods
- Are these common recycling techniques adoptable for recycling of all-solid-state LIBs?

Test cell composition

- Solid electrolyte: Cubic Garnet Al-doped LLZO (Li_{6.25}Al_{0.25}La₃Zr₂O₁₂)
- Cathode composite: LFP (carbon coated LiFePO₄) 40 wt% + LLZO 40 wt% + C 10 wt% + PVDF 10 wt%
- Anode composite: LTO ($Li_4Ti_5O_{12}$) 40 wt% + LLZO 40 wt% + C 10 wt% + PVDF 10 wt%

Leaching / Precipitation process

Fig. 2. Cross sectional SEM image of a LFP/LLZO/LTO pellet used in this study

Fig. 3. A general overview of the experimental procedure followed in this study based on ref. [5]

Results and Discussion

HCI Leaching

- Pure LLZO was found to be stable in the HCI leaching solution
- In contrast LLZO is decomposed by HCI leaching within the LFP/LLZO/LTO mixture
- Leaching time influences the amount of dissolved
- A mixture of ZrO_2/TiO_2 is obtained from the precipitate after HCI leaching
- Obtained ZrO_2 can be further purified by H_2SO_4 (high concentration) washing
- More than 99% of ZrO_2 can be recycled
- La_2O_3 can be extracted from the spent solution

- TiO_2 and a part of ZrO_2 can be obtained from precipitate after H₂SO₄ leaching
- $La_2Zr_2O_7$ can be extracted and purified

LFP/LLZO/LTO

+ LaFeO₃

Fig. 4. HCI Leaching process of LFP/LLZO/LTO mixture and the obtained products

Fig. 5. XRD pattern of as-synthesized and leached (in the HCl solution) pure LLZO

Leached for 6h Leached for 2h 15 20 25 30 35 40 45 50 55 60 65 70 Fig. 6 XRD pattern of the as-milled and leached (at different leaching time) of the LFP/LLZO/LTO mixture

Reformation of LLZO from recycled products

- Cubic garnet-type phase of LLZO can be recycled from the recovered ZrO_2/La_2O_3
- The impurity phases are due E to impurity in recovered ZrO_2 and La_2O_3
- Recovery of lithium is still in progress

LaFeO₃ (53%) +La₂O₃ (47%)

Fig. 10. H₂SO₄ Leaching process of LFP/LLZO/LTO mixture and the obtained products

Conclusions

- LFP/LLZO/LTO complex system can be recycled in form of oxides (e.g. ZrO_2 , TiO_2 , La_2O_3 and $LaFeO_3$)
- Lithium is still missing: perhaps recovered Li₂O reacted to the AI_2O_3 crucible
- Cubic garnet-type LLZO compound can in principle be recycled from the recovered oxides
- The purity of the recovered LLZO still remains a challenge: further purification of the recovered precursors is required
- How would be the electrochemical properties of a cell made by recycled components?

Acknowledgments

('n

This work is financially supported by the German federal state of Hesse – Hessen Agentur (HAproject no. 848/20-08)

HESSEN **HessenAgentur**

HA Hessen Agentur GmbH

Measured

- La₂Li_{0.5}Al_{0.5}O₄

2 θ (°)

Li_xLa_{1-x}(Ti_{1-v}Fe_v)O₃ (perovskite)

Refined

References

[1] Jacoby, M. (2019). *Chemical and Engineering News* **97**(28) [2] Harper, G., et al. (2019). *Nature* **575**(7781): 75-

86 [3] Larouche, F., et al. (2018) *Extraction 2018*: 2541-2553

[4] Zheng, X., et al. (2018). *Engineering* **4**(3): 361-370

[5] Larouche, F., et al. (2020). *Materials* **13**(3)

