International Conference on **Resource Chemistry** March 08-09, 2021

CONTROLLING THE DEFECTS OF LEAD-FREE DOUBLE PEROVSKITE Cs₂AgBiBr₆ BY VARIED PRECURSOR CONCENTRATIONS

Alexander Frebel¹, Songhak Yoon^{1*}, Dennis M. Jöckel¹, Samuel Meles Neguse¹, Marc Widenmeyer², Benjamin Balke¹, Anke Weidenkaff^{1,2}

¹Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS, Aschaffenburgerstrasse 121, 63457 Hanau, Germany. ²Department of Materials and Earth Science, Materials and Resources, Technische Universität Darmstadt, Alarich-Weiss-Strasse 2, 64287

Darmstadt, Germany

*Corresponding author. e-mail: song.hak.yoon@iwks.fraunhofer.de

The double perovskite Cs₂AgBiBr₆ has been one of the most intensively studied Pb-free perovskite-type light absorbers for solar cells. Compared to the Pb-based counterparts Cs₂AgBiBr₆ exhibit currently lower power conversion efficiency (PCE) and external quantum efficiency (EQE), but its environmentfriendliness and phase durability make it a viable alternative. It is known that the relative short carrier lifetime compared to the lead-based hybrid perovskites results in an insufficient PCE. (ACS Energy Lett. 2020, 5, 2200–2207) Main cause of this is found to be the high density of trap states, which bound the charge carriers or allow for non-radiative recombination. (ACS Energy Lett. 2020, 5, 3821–3827) In this work, by the variation of the precursor concentrations during the synthesis, the amount and type of the defects were controlled. This is realized by using two different synthesis routes, i.e., solution cooling method and microwave-assisted hydrothermal method. From the estimated Urbach energy by UV-Vis spectroscopy and peak broadening analysis in Raman spectroscopy, it is confirmed that the defect concentration is changed by a variation of the Ag/Bi precursor ratio. In addition, applying Ag-rich condition during the synthesis are found to be favorable for preventing the formation of Cs₃Bi₂Br₉. Our findings provide a guidance to decrease the trap densities and thus can be applied to the fabrication of $Cs_2AgBiBr_6$ -based thin film solar cells.

Two synthesis approaches

Solution cooling method

Microwave-assisted hydrothermal method

Fast cooling (200-50 °C, 1 h)

Double perovskites

Structure is similar to the simple perovskite structure with two different elements at *B*site

Defects in Cs₂AgBiBr₆ and secondary phases

- The PCEs of the Cs₂AgBiBr₆-based PSCs are still low due to the defects
- The formation of deep defects needs to be prevented for efficient charge carrier transport
- Preferred Defects in Cs₂AgBiBr₆: V_{Aa}, V_{Br}, Ag_{Bi}
- Possible secondary phase: Cs₃Bi₂Br₉

Goal: Controlling defects and preventing Cs₃Bi₂Br₉

• All Raman bands show an increase of the band width at Ag-rich precursor conditions

Thermogravimetric analysis

Raman spectroscopy

Identification of Cs₂AgBiBr₆ and Cs₃Bi₂Br₉

- Cs₃Bi₂Br₉ preferably formed under Bi-rich conditions
- Cs₂AgBiBr₆ preferably formed under Ag-rich conditions
- In hydrothermal method, Cs₂AgBiBr₆ forming range extended towards Bi-rich conditions

Peak broadening caused by defects

UV-VIS spectroscopy

- Absorption coefficient determined by Kubelka-Munk function
- Band gap estimation by Tauc-plot

1.5 Hydrothermal

0.5 -

-0.5 --1.0 -

-1.5 -

– Bi 50 – Bi 33

– Bi 25

Urbach energy $E_{\rm U}$ was determined by slope of exponential part of the absorption edge

- Temperature (°C) TGA showed decrease of onset temperature of thermal decomposition of Cs₂AgBiBr₆ on Bi-poor side
- Decrease of onset temperature indicated indirectly the degree of imperfection

Summary and Outlook

- Ag-rich synthesis conditions prevented formation of Cs₃Bi₂Br₉
- Ag-rich conditions lead also to increased defect concentration

100

80

It varies depending on crystal perfection and defect amount

- Higher Urbach energy means more crystal imperfections
- Consistent wth the results of Raman spectroscopy

* Denotation: the number indicates the percentage of Bi in precursor solution. Bi 25 means 25% of Bi and 75% of Ag in precursor solution

and apparently, the defect type is changed, which need further investigations together with the determination of the defect type

Acknowledgements

This work was supported by Fraunhofer Lighthouse Project MaNiTU.

